C-C BOND CLEAVAGE IN THE INTERACTION OF ANTHRAQUINONE TRIPLET WITH TERTIARY ALCOHOLS AND TERTIARY BUTYLBENZENE

G.Móger, M.Győr

Central Research Institute for Chemistry of the Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 17, Hungary

Summary: In the photochemical reaction of anthraquinone triplet with both tertiary alcohols and tert.Bu-benzene in C_{6H_6} at $\lambda \ge 334$ nm not only C-H (or O-H) bonds but C-C bonds are also broken, yielding \dot{CH}_3 , and $R_1\dot{C}(R_2)OH$ (or $C_6H_5\dot{C}(CH_3)_2$) radicals, at room temperature.

Wagner and Puchalski have shown, that in the photochemical interaction of acetophenone triplet (^TRO) with 1-phenylethanol (HROH) in C_{6H_6} both α -CH and O-H bonds are broken, yielding alkoxy radicals, which may undergo β -scission.¹ At the same time we have found, that in the reaction of anthraquinone triplet (^TQ) with HROH in the same solvent at T \geq 333 K both CH₃ and C_{6H_5} CH(OH) radicals are formed², that is, the photochemical C-C bond cleavage cannot be a result of β -scission of alkoxy radicals exclusively.

In the present work we report results on the photochemical interaction of ${}^{T}Q$ with a number of alcohols in $C_{6}H_{6}$ at room temperature in the presence of 2,6-dibromonitrosobenzene (DNB) used as an excellent spin trap for both alkoxy and C-centred radicals.^{3,4} Furthermore, products in the photochemical interaction of ${}^{T}Q$ with ethylbenzene, cumene and tert.butyl-benzene in the same solvent are also summarized. Measurements have been carried out in the absence of O_{2} . The incident light intensity was maintained at 10^{-4} mol photon $1^{-1}s^{-1}$ measured by using potassium ferric oxalate actinometer.⁵ Experimental details have been described earlier.²⁻⁵ Deacreated solutions were directly illuminated in the ESR cavity at $\lambda \ge 334$ nm. Nitroxyl radicals detected in the ${}^{T}Q$ -alcohol (or aromatic hydrocarbon) systems are listed in Table 1. It can be seen, that in the reaction of ${}^{T}Q$ with $C_{2}H_{5}OH$, n-propyl and i-propyl alcohols as well as with ethylbenzene and cumene the α -CH bonds are broken and primary C-centred radicals trapped by DNB, while a number of further radicals were also detected during the photochemical interaction of ${}^{T}Q$ with tertiary butyl-benzene or with tertiary alcohols. According to the data of Table 1 not only

 T RO (as suggested by Wagner and Puchalski)¹ but also T Q abstracts hydrogen from OH groups of alcohols, yielding HRO (from HROH) or CH₃C(CH₃)₂O (from tert.Bu_OH).

Furthermore, rupture of C-C bonds was observed in the reaction of ${}^{T}Q$ with tert. Bu OH - and cumylalcohol - as well as with tert.butyl-benzene yielding $R_1C(R_2)$ OH or $C_{6}H_5C(CH_3)_2$ as well as CH₃ radicals. The energy of the lowest triplet state of Q is 62.5 kcal/mol, that is, the T-T energy transfer from the lowest triplet state of Q to the triplet states of tertiary alcohols and tert.butyl-benzene would be substantially endothermic.^{6,7}

It has been suggested, that the Norrish type I cleavage occurs in a two photon reaction at room temperature. 8,9 Reexcitation by absorption of a second photon leads to

Alcohol or hydrocarbon	Conc. M	Trapped Radicals	Hfs constans (mT)	
			a _N	a _H
с ₂ н ₅ -он	1	снаснон	1.321	0.843
CH3CH2CH2OH	1	CH2CH2CHOH	1.32	0.68
CH ₃ CH(CH ₃)OH	1	(CH ₃) ₂ COH	1.34	-
5 5		CH2-R1	1.316	0.92 <u>+</u> 0.2
(Сн ₃) ₃ С-ОН	1	CH ₃	1.32	1.21
		(CH ₃) ₃ CO.	2.65	-
		(CH ₃) ₂ COH	1.32	-
C6H5CH2CH3	1	C6H5CHCH3	1.30	0.54
С Н С (СН 3) 2-Н	1	C6H5C(CH3)2	1.38	-
C ₆ H ₅ C(CH ₃) ₂ OH	1	C6H5C(CH3)OH	1.38	-
		R ₂ -CH ₂	1.32	0.89
с ₆ н ₅ с(сн ₃) ₃	1	C6H5C(CH3)2	1.30	-
C ₆ H ₅ CH(CH ₃)OH	1	C6H5CH(CH3)O	2.7 <u>+</u> 0.2	-
-6-5	,	C6H5CH(OH)	1.334	0.68

Nitroxyl radicals obtained by spin trapping of free radical intermediates by 2,6dibromonitrosobenzene in the photochemical interaction of anthraquinone triplet with alcohols and aromatics in C₆H₆ at 298 K in the absence of oxygen. $[Q]_{\circ} = 10^{-3}$ M, [DNB] = 7 \cdot 10^{-3} M, $\lambda \ge 334$ nm, $I_{\circ} = 10^{-4}$ mol photon $1^{-1}s^{-1}$

the upper triplet state possessing more than sufficient energy to facilitate the bond cleavage. Due to the energy requirements of the photochemical interaction of ^TQ with tertiary alcohols, as well as with tert.Bu-benzene a two photon process^{6,7} cannot be excluded at room temperature. It is worth mentioning, that at low temperature (77 K) the C-C bond cleavage of tert.Bu-alcohol has been supported by Terenin et al^{6,7} in the reaction of a number of various triplets with this alcohol.

References

- 1. P.J.Wagner, A.E. Puchalski, J. Am. Chem. Soc., 1980, 102, 7140
- 2. G.Móger, A. Rockenhauer, P. Simon, Radiochem. Radioanal. Lett., 1980, 42, 407
- A.Rockenbauer, L.Sümegi, G.Móger, P.Simon, M.Azori, M.Győr, Tetrahedron Lett., 1978, 50, 5057
- 4. A.Rockenbauer, S.A.Abdel-Monem, G.Móger, L.Sümegi, J. Mol. Struct., 1978, 46, 169
- 5. G.Móger, D.Gál, Ber. Bunsenges. Phys. Chem., 1989, 93, 575
- 6. A.Terenin, Photochemistry of Dyes (in Russian) "Nauka" Moscow, 1967
- 7. A. Terenin, V. Rylkov, V. Khoglomorov, Photochem. Photobiol., 1966, 5, 43
- 8. W.G.McGimpsey, I.C.Scaiano, J.Am. Chem. Soc., 1989, 111, 335, ibid., 1987, 109, 2179
- 9. L.I.Johnston, I.C.Scaiano, J.Am. Chem. Soc., 1987, 109, 5487

(Received in UK 30 October 1989)

Table 1